skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Knap, Michael"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The realization of synthetic gauge fields for charge neutral ultracold atoms and the simulation of quantum Hall physics have witnessed remarkable experimental progress. Here, we establish key signatures of fractional quantum Hall systems in their nonequilibrium quantum dynamics. We show that in the lowest Landau level the system generically relaxes subdiffusively. The slow relaxation is understood from emergent conservation laws of the total charge and the associated dipole moment that arises from the effective Hamiltonian projected onto the lowest Landau level, leading to subdiffusive fracton hydrodynamics. We discuss the prospect of rotating quantum gases as well as ultracold atoms in optical lattices for observing this unconventional relaxation dynamics. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  2. null (Ed.)